Inhibition of Glycogen Synthase Kinase 3 (GSK3) Increases the Cytotoxicity of Enzastaurin

نویسندگان

  • Mark Rovedo
  • Nancy L Krett
  • Steven T Rosen
چکیده

Cutaneous T-cell lymphomas (CTCL) represent a spectrum of several distinct non-Hodgkin's lymphomas that are characterized by an invasion of the skin by malignant, clonal lymphocytes. Our laboratory has previously demonstrated that the protein kinase C (PKC) β inhibitor Enzastaurin increases apoptosis in malignant lymphocytes of CTCL. These results directly led to a clinical trial for Enzastaurin in CTCL in which it was well tolerated and showed modest activity. To ascertain a means of improving the efficacy of Enzastaurin, we investigated complementary signaling pathways and identified glycogen synthase kinase-3 (GSK3) as important in survival signaling in CTCL. Enzastaurin combined with GSK3 inhibitors demonstrated an enhancement of cytotoxicity. Treatment with a combination of Enzastaurin and the GSK3 inhibitor AR-A014418 resulted in upregulation of β-catenin total protein and β-catenin-mediated transcription. Inhibition of β-catenin-mediated transcription or small hairpin RNA (shRNA) knockdown of β-catenin decreased the cytotoxic effects of Enzastaurin plus AR-A014418. In addition, treatment with Enzastaurin and AR-A014418 decreased the mRNA levels and surface expression of CD44. shRNA knockdown of β-catenin also restored CD44 surface expression. Our observations provide a rationale for the combined targeting of PKC and GSK3 signaling pathways in CTCL to enhance the therapeutic outcome.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of glycogen synthase kinase-3 increases NKG2D ligand MICA expression and sensitivity to NK cell-mediated cytotoxicity in multiple myeloma cells: role of STAT3.

Engagement of NKG2D and DNAX accessory molecule-1 (DNAM-1) receptors on lymphocytes plays an important role for anticancer response and represents an interesting therapeutic target for pharmacological modulation. In this study, we investigated the effect of inhibitors targeting the glycogen synthase kinase-3 (GSK3) on the expression of NKG2D and DNAM-1 ligands in multiple myeloma (MM) cells. GS...

متن کامل

Acute selective glycogen synthase kinase-3 inhibition enhances insulin signaling in prediabetic insulin-resistant rat skeletal muscle.

Glycogen synthase kinase-3 (GSK3) has been implicated in the multifactorial etiology of skeletal muscle insulin resistance in animal models and in human type 2 diabetic subjects. However, the potential molecular mechanisms involved are not yet fully understood. Therefore, we determined if selective GSK3 inhibition in vitro leads to an improvement in insulin action on glucose transport activity ...

متن کامل

Robust Self-Renewal of Rat Embryonic Stem Cells Requires Fine-Tuning of Glycogen Synthase Kinase-3 Inhibition

Germline-competent embryonic stem cells (ESCs) have been derived from mice and rats using culture conditions that include an inhibitor of glycogen synthase kinase 3 (GSK3). However, rat ESCs remain susceptible to sporadic differentiation. Here, we show that unsolicited differentiation is attributable to overinhibition of GSK3. The self-renewal effect of inhibiting GSK3 is mediated via β-catenin...

متن کامل

Analysis of hepatic gene transcription in mice expressing insulin-insensitive GSK3.

GSK3 (glycogen synthase kinase-3) regulation is proposed to play a key role in the hormonal control of many cellular processes. Inhibition of GSK3 in animal models of diabetes leads to normalization of blood glucose levels, while high GSK3 activity has been reported in Type II diabetes. Insulin inhibits GSK3 by promoting phosphorylation of a serine residue (Ser-21 in GSK3alpha, Ser-9 in GSK3bet...

متن کامل

Pharmacological Inhibition of Glycogen Synthase Kinase 3 Regulates T Cell Development In Vitro

The development of functional T cells requires receptor-mediated transition through multiple checkpoints in the thymus. Double negative 3 (DN3) thymocytes are selected for the presence of a rearranged TCR beta chain in a process termed β-selection which requires signalling via the pre-TCR, Notch1 and CXCL12. Signal integration by these receptors converges on core pathways including the Phosphat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 131  شماره 

صفحات  -

تاریخ انتشار 2011